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Numerical studies are performed addressing the development of regions of high
curvature and the spontaneous occurrence of cusped interfacial shapes in two-
dimensional and axisymmetric Stokes flow. In the numerical simulations, the velocity
field is computed using a boundary-integral method, and the evolution of the
concentration of an insoluble surfactant over an evolving interface is computed using
an implicit finite-volume method. Three configurations are considered in detail, and the
results are used to elucidate three different aspects of cusp formation. In the first series,
the deformation of a two-dimensional bubble immersed in a family of straining flows
devised by Antanovskii, and of an axisymmetric bubble immersed in an analogous
family of flows devised by Sherwood, are examined. The numerical results indicate that
highly elongated and cusped two-dimensional shapes, and pointed or cusped
axisymmetric shapes, are unstable and should not be expected to occur in practice. In
the second series of studies, the role of an insoluble surfactant on the transient
deformation of bubbles subject to the Antanovskii or Sherwood flow is investigated.
Under certain conditions, the reduced surface tension at the tips raises the local
curvature to high values and causes the ejection of a sheet or column of gas by means
of tip streaming. In the third series of studies, the coalescence of a polygonal formation
of five viscous columns of a fluid placed in an arrangement that differs only slightly
from one proposed recently by Richardson is examined. The numerical results confirm
Richardson’s predictions that transient cusps may occur at a finite time in the presence
of surface tension. The underlying physical mechanism is discussed on the basis of
reversibility of surface-driven Stokes flow and with reference to the regularity of the
motion driven by negative surface tension. Replacing the inviscid ambient gas with a
slightly viscous fluid whose viscosity is as low as one hundredth the viscosity of the
cylinders suppresses the cusp formation.

1. Introduction

Considerable interest has arisen in recent years in confirming the spontaneous
occurrence and in analysing the geometrical structure of singularities at free surfaces
or interfaces in steady or unsteady Stokes flow. An overview of flows where interfacial
corners and cusps are known, or have been alleged, to occur was presented by Joseph
(1992) and more recently by Pozrikidis (1997b). Examples include extensional flow past
a bubble, flow induced by a shrinking drop or an expanding bubble, flow underneath
a free surface driven by the motion of two counter-rotating rollers or by a point source
dipole, and the gravity-driven flow of a liquid layer resting on a horizontal, or flowing
down an inclined, wall. More recent contributions were made by Richardson (1997)
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and Antanovskii (1996) whose work will be discussed in later sections. Betelu! , Diez &
Gratton (1997) studied the evolution of two-dimensional interfacial ripples due to a
straining flow, and offered further evidence for near-cusp formation in unsteady flow.
Betelu! (1977) addressed a family of problems involving corner and cusp formation
using analytical, numerical, and experimental methods.

One particular family of two-dimensional flows where steady cusped interfacial
shapes have been shown to occur was introduced by Antanovskii (1994a, c). The
arrangement includes a two-dimensional inviscid bubble of equivalent radius a centred
at the origin of a stagnation-point flow, as depicted in figure 1(a). The unperturbed
incident velocity field is given by
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where G is the rate of elongation, and c
"
and c

#
are dimensionless constants. Setting c

"
and c

#
equal to zero yields the familiar irrotational orthogonal stagnation-point flow.

The velocity field associated with the constant c
"
is irrotational, the pressure is uniform,

and the corresponding flow pattern has four lines of symmetry including the x- and y-
axes and two axes that are rotated by 45° with respect to them. The velocity field
associated with the constant c

#
is rotational, the pressure does vary with position in the

flow, and the corresponding flow pattern has two lines of symmetry including the x-
and y-axes, as shown in figure 1(b). Antanovskii (1996) showed that the flow near the
centre of a four-roller mill apparatus, devised by G. I. Taylor to study drop
deformation in extensional flow, is described, to leading order, by the right-hand sides
of equation (1) with c

"
¯ 0 and c

#
¯ (a}l )# ; l is the half-size of the mill side.

Richardson (1968) predicted, and more recent numerical studies by Pozrikidis
(1997b) confirmed, that when the interface has constant tension γ, steady interfacial
bubbles shapes subject to the irrotational orthogonal stagnation-point flow are
possible only when the capillary number Ca¯ 2µGa}γ has a value that is less than the
critical threshold 0±609; µ is the viscosity of the ambient fluid. For lower values of Ca,
the bubbles have perfectly elliptical shapes ; for higher values of Ca, the transient
bubble deformation leads to continued elongation.

Antanovskii (1994a, c, 1996) extended Richardson’s analysis to non-zero values of
c
"
and c

#
, and produced graphs of the deformation parameter D¯ (L®B)}(LB) and

tip curvature versus Ca ; the lengths L and B are defined in figure 1(a). A family of
curves corresponding to c

"
¯ 0 and several values of c

#
are shoiwn in figure 2(a),

adapted from figure 4 of Antanovskii (1996) (in Antanovskii’s analysis, the constant c
#

is denoted as ε). The monotonically rising curves had been presented earlier by
Antanovskii (1994c). Figure 2(a) reveals the existence of two solution branches when
the value of c

#
is sufficiently small : one with slightly and moderately deformed bubbles,

and the second with significantly elongated bubbles. The two branches join with
hysteresial loops. Plotting the tip curvature κ as a function of the capillary number
reveals an exponential dependence, as shown in figure 2(b), similar to that discovered
earlier by Jeong & Moffatt (1992) for a different type of flow. In all cases, as Ca is
raised, the bubbles develop pointed ends that lead to cusped shapes. Steady, but not
necessarily stable, half-bubble shapes at the transition points for c

#
¯ 0±00174 are

depicted in the insets of figure 2(c), adapted from figures 7 and 8 of Antanovskii (1996).
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F 1. (a) Illustration of two-dimensional extensional flow past an inviscid bubble, showing the
element discretization. (b) The streamline pattern of the unperturbed flow associated with the
constant c

#
that appears in equations (1).

Antanovskii (1996) suggested that the hysteresial loops connect two stable branches,
and that sudden transitions between the branches occur at the extremes.

Pozrikidis (1997b) attempted, but was unable, to obtain steady cusped shapes as the
result of a transient deformation for vanishing surface tension, and suggested that such
shapes are unstable. His numerical investigation covered values of c

"
and c

#
in the

range where the graph of the function D(Ca) is monotonic. Given this numerical
evidence, it appears that the steady shapes are stable only when Ca is less than a critical
value that depends on the structure of the incident flow, that is, it depends on the values
of c

"
and c

#
. Unfortunately, because of numerical difficulties associated with the large

curvature of the interface at the tip, whether this critical value is finite or infinite could
not be ascertained.

The recent discovery that two solution branches exist when c
"
¯ 0 and the value of

c
#
is sufficiently small, merging to yield a one-to-one function D(Ca) at a certain value

of c
#
, as shown in figure 2(c), motivates the re-examination of the stability of the shapes

on either side of a hysteresial loop. In the first part of this work, presented in §3, we
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offer numerical evidence that the elongated shapes and the cusped shape for zero
surface tension are unstable, and thereby cast further doubt on the physical relevance
of singular shapes at vanishing surface tension for this particular type of flow.

The two-dimensional flow considered by Antanovskii has an axisymmetric counter-
part considered earlier by Sherwood (1984). In cylindrical polar coordinates (x,σ, } ),
the unperturbed incident velocity field is given by
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where a is the equivalent bubble radius and c
#
is a dimensionles constant. Setting c

#
¯

0 yields the familiar irrotational orthogonal stagnation-point flow with uniform
pressure. The velocity field associated with the constant c

#
is rotational, the pressure is

non-uniform, and the streamline pattern is topologically similar to that of the
orthogonal stagnation-point flow. It is evident that the velocity field (2) is the
axisymmetric counterpart of the two-dimensional velocity field (1) with c

"
¯ 0.

Although the correspondence between the Antanovskii and the Sherwood flow has
not been recognized explicitly, the behaviours of two-dimensional and axisymmetric
bubbles have been compared for the special case of irrotational stagnation-point flow;
two-dimensional bubbles are stable only if the capillary number is sufficiently small, as
discussed earlier, whereas axisymmetric bubbles appear to be stable for any value of the
capillary number, however large. This contrast, however, is softened by the observation
that axisymmetric bubbles subject to irrotational stagnation-point flow behave
similarly to two-dimensional bubbles subject to the Antanovskii flow for values of c

#
and c

"
that lie in the range where the graph of the function D(Ca) is monotonic. One

difference is that, as Ca tends to infinity, the deformation parameter of axisymmetric
bubbles tends to unity, whereas that of two-dimensional bubbles tends to a limit that
is less than unity.

Using the slender-body approximation which is applicable for elongated shapes,
Sherwood (1984) computed families of steady shapes parametrized by the capillary
number Ca*¯ c"/%

#
µGa}γ and the flow parameter c

#
. His results suggested that when

c
#

is zero or positive, steady shapes exist for any value of Ca*. When c
#
¯ 0, in

particular, as Ca* is raised, the bubble tips tend to obtain conical shapes whose traces
in an azimuthal plane form corners ; when c

#
" 0, as Ca* is raised, the tips tend to

obtain conical shapes whose traces in an azimuthal plane form cusps. Much earlier,
Buckmaster (1972) had shown that a true corner may not develop, the slender-body
solution is invalid within an exponentially small region near the tips, and the ultimate
state of a geometrical singularity is a cusp.

In §3, we present results of numerical simulations on the transient deformation of
axisymmetric bubbles subject to the Sherwood flow, and confirm that the formation of
cusped shapes is promoted by the nonlinearity of the incident flow. More importantly,
we find that, in the absence of surface tension, steady cusped shapes either do not exist,
or else are unstable. Consideration of the graphs of the deformation parameter versus
the capillary number reveals that the behaviours of axisymmetric and two-dimensional
bubbles are not as different as it might have appeared.

F 2. (a) The deformation parameter D of steady two-dimensional bubbles plotted against the
capillary number for an incident flow with c

"
¯ 0 and c

#
¯ 0 (broken line), 0±002, 0±004, 0±006, 0±008

and 0±01. (b) The corresponding bubble tip curvature κ. (c) The deformation curve for c
#
¯ 0±00174;

the insets show bubble profiles at the transition points. All figures are reproduced from Antanovskii
(1996).
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In the second part of this work, we investigate the effect of a surfactant on the
deformation and tip curvature of a pointed bubble. The significance of surface tension
variations on the transient deformation of a drop subject to an axisymmetric
irrotational stagnation-point flow was discussed in detail by Stone & Leal (1990) and
Milliken, Stone & Leal (1993). When the viscosity of the drop is equal to that of the
ambient fluid, the boundary-integral computations of Milliken et al. showed that,
depending on the surfactant diffusivity and the sensitivity of the surface tension to the
surfactant concentration, a surfactant may act in two different ways: it may either
suppress the development of bulbous ends and lead to cigar-like shapes or it may
promote the formation of the bulbous ends. For low-viscosity drops, there is strong
evidence that the surfactant promotes the formation of spindle-like shapes, but the
numerical simulations of Milliken et al. were terminated before the tip curvature had
reached small values, and tip streaming could not be observed. De Brujin (1993)
reported laboratory observations confirming that a surfactant facilitates tip streaming
from a drop that is suspended in a simple shear flow, but a quantitative description was
not given. Antanovskii (1994b) studied the flow induced by a pair of counter-rotating
point vortices underneath a free surface, and confirmed that surfactants facilitate cusp
formation. Numerical difficulties prevented the resolution of the local structure of the
interface near the cusp.

In §4 of this paper, we study the effect of a surfactant on the transient deformation
of a two-dimensional bubble subject to the Antanovskii flow. The main objective is to
illustrate in an explicit manner the way in which the accumulation of the surfactant at
the tips raises the curvature and causes disintegration. We show that with all other
parameters held constant, reducing the surfactant diffusivity may lead to tip streaming,
but making the surface tension a more sensitive function of the surfactant concentration
may have a mixed influence. A brief consideration of the analogous axisymmetric
problem with a bubble suspended in the Sherwood flow reveals similar behaviours.

In the third part of this work, presented in §5, we discuss the formation of transient
cusps in unsteady two-dimensional flow driven solely by surface tension. The
motivation for undertaking this investigation originates from an important distinction:
steady cusps may occur only in the theoretical limit of vanishing surface tension,
whereas, at least in principle, transient cusps may occur for any value of the surface
tension. Since the curvature at the location of the cusp is infinite, the flow in the
neighbourhood of the cusp in the presence of surface tension resembles that due to a
two-dimensional point force, and the velocity at the location of the cusp is infinite. The
lifetime of the singularity, however, is short enough that the displacement of the
interface during the time of cusp formation and disappearance is finite. An exception
should be noted: conical interfaces whose traces in an azimuthal plane produce cusped
profiles may exist in both steady and unsteady flow. In this case, the flow near this
cusp does not resemble that due to a three-dimensional point force and the velocity
is finite.

Hopper (1990) suggested that ‘on the basis of the model physics incorporated into
the evolution equation, it cannot be possible for a cusp to form in the forward time
discretization: Tractions and stresses at the surface would blow up’. While this is a
physically understandable viewpoint shared by a number of subsequent authors, the
inability of the Stokes equation to spontaneously produce singular behaviours in
surface-tension-driven flow has not been argued convincingly by physical reasoning or
discounted by analytical methods.

Richardson (1997) studied the coalescence due to surface tension of viscous cylinders
in vacuum, and made an astonishing discovery: a transient cusp forms at a critical
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condition when a small bubble is about to be trapped within the liquid. His
investigation uses a semi-analytical approach based on conformal mapping and on the
complex-variable formulation of two-dimensional Stokes flow. In §5 of this paper, we
confirm Richardson’s predictions, discuss the phenomenon of transient cusp formation
with reference to the nature of the reversed flow driven by negative surface tension, and
show that replacing the ambient inviscid gas with a slightly viscous fluid suppresses the
singular behaviour.

2. Mathematical formulation and numerical method

In subsequent sections, we present the results of numerical simulations on the
evolution of a two-dimensional or axisymmetric drop or bubble with viscosity µ

#
¯λµ,

placed in an ambient fluid with viscosity µ. We allow the interface to be occupied with
an insoluble surfactant whose surface concentration is denoted as Γ. The flow in the
exterior or interior of the drop or bubble is governed by the equations of Stokes flow
(e.g. Pozrikidis 1997a), and the evolution of the surfactant concentration is governed
by a convection–diffusion equation discussed in the Appendix. At the initial instant,
the surfactant concentration, and thus the surface tension, is uniform over the
interface.

For simplicity, we assume that the surface tension γ is related to the surfactant
concentration Γ by the linear equation of state

γ¯γ
!

1®(Γ}Γ
!
)β

1®β
, (3)

where the subscript 0 designates the initial value, β¯Γ
!
RT}γ

c
is a physicochemical

constant expressing the sensitivity of the surface tension to the surfactant con-
centration, R is the ideal gas constant, T is the absolute temperature, and γ

c
is the

surface tension of a clean interface that is devoid of surfactants. A nonlinear equation
of state would have been more appropriate, but it would unnecessarily distract the
numerical investigation from its main focus.

The statement of the problem is completed by specifying the initial drop or bubble
shape, and by assigning values to the dimensionless property number α and capillary
number Ca defined as

α3
aγ

!

µD
s

, Ca3
µGa

γ
!

, (4)

where D
s
is the surfactant surface diffusivity, and G is a typical rate of elongation of

the incident flow. Alternatively, the surfactant surface diffusivity may be expressed in
terms of the Pe! clet number Pe¯Ga#}D

s
¯αCa. Either of the two dimensionless

numbers defined in equations (4) may be replaced by Pe.

2.1. Numerical method

We briefly outline the numerical method for two-dimensional flow; the method for
axisymmetric flow arises by straightforward modifications. In the numerical procedure,
we trace a quarter of the drop or bubble interface with a collection of N1 marker
points, as shown in figure 1(a), and describe its shape with blended circular arcs that
are subtended across trios of adjacent points. In the presence of surfactant, we assign
values of the surfactant concentration to the markers points, denoted as Γ

i
, and

introduce the average value of the concentration Γ
E,i

over the ith element with end
points labelled i and i1, as shown in figure 1(a).
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The velocity of the fluid at the marker points arises by solving an integral equation
of the second kind (e.g. Pozrikidis 1992). In the numerical implementation, the integral
equation is converted into a system of linear equations with the unknown vector
containing the two components of the velocity at the marker points. The velocity
distribution is assumed to vary linearly with respect to arclength between two adjacent
marker points. When the viscosity ratio λ has a finite value, including zero, the solution
is found by the method of successive substitutions with Gauss–Siedel updating. The
eigenfunctions of the double-layer potential corresponding to the dominant eigenvalues
are removed to ensure convergence. The number of necessary iterations for a specified
relative error of 10−' varies between a few for compact shapes to a few dozen for
elongated shapes. When λ is large or infinite, in which case the ambient fluid is nearly
or truly inviscid, the linear system is solved by the method of Gauss elimination.

Once the velocity has been computed, the position of the marker points is advanced
either with the velocity of the fluid or with the component of the velocity of the fluid
normal to the interface. The former is appropriate when a drop or bubble continues to
evolve without reaching a steady state, and the latter is appropriate near the steady
state.

To update the concentration of the surfactant, we consider equation (A 9) of the
Appendix. When the marker points move with the velocity component normal to the
interface, we apply the trapezoidal rule to evaluate the two line integrals over the ith
interfacial segment, and derive the ordinary differential equation

dΓ
E,i

dt
¯®

(Γu[t)
i+"

®(Γu[t)
i

∆l
i

®(Γκu[n)
E,i

D
s 0¥Γ¥l 1

i+"

®D
s 0¥Γ¥l 1

i

, (5)

where ∆l
i
is the arclength of the ith element. Expressing the nodal values Γ

i
on the

right-hand side in terms of the element values Γ
E,i

, and computing the derivative with
respect to arclength at the nodes using second-order differences, we obtain the linear
system

dΓ
E,i

dt
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Γ

E,i−"
), (6)

where the Greek coefficients are defined in terms of the segments’ arclength and
tangential velocity. The system of equations (6) was integrated using the implicit Euler
method, with all coefficients multiplying the values Γ

E,i
on the right-hand side

evaluated at the beginning of the time interval of integration. A similar method was
used when the marker points moved with the total velocity of the fluid. This numerical
procedure has excellent conservation properties : the total amount of surfactant
changed only by a fraction of a percent through the completion of a simulation.

At the initial instant, values of the concentration Γ
i
were assigned to the nodes, and

the element values Γ
E,i

were computed by the four-point centred interpolation with
respect to arclength; the evaluation was done at the middle of each element.
Subsequently, the nodal values Γ

i
, necessary for the computation of the velocity, arose

from the element values Γ
E,i

by an analogous four-point centred interpolation. To
resolve regions of high curvature and avoid marker point clustering or dilution, the
interface is regridded after each time step using the method described by Pozrikidis
(1997b). A new feature is the four-point centred interpolation for the surfactant
concentration with respect to arclength. Care is taken to preserve the symmetries of the
flow in the required interpolations. Regridding and interpolation of the surface
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variables are essential for the successful resolution of regions of high curvature.
Without them, the numerical investigations would have not been possible.

All computations were executed on a SUN SPARCstation 20 computer with 64
Mbytes of RAM. A complete case study required between 15 min to 25 h of CPU time,
with the number of interfacial marker points, ranging between 48 and 500 being the
determining factor. The computer code was validated by running numerous tests and
confirming agreement with published results, including those presented by Milliken et
al. (1993) for the deformation parameter of an axisymmetric bubble in the presence of
surfactants at steady state.

3. Pointed bubbles with constant surface tension

First, we consider the deformation of a two-dimensional bubble placed in the
extensional flow described by equations (1), where c

"
¯ 0 and c

#
has a prescribed value.

Antanovskii (1996) presented steady bubble profiles, deformation plots, and tip-
curvature graphs for c

#
¯ 0±01. To illustrate the performance of the numerical method,

we begin the discussion by comparing our numerical results with Antanovskii’s
predictions.

At the upper part of figure 3(a), we display steady shapes for Ca¯ 0±4, 0±5 and 0±6,
and a nearly steady shape for Ca¯ 0±7, and compare them with the corresponding
shapes displayed by Antanovskii (1996), shown in the lower part. Numerical difficulties
prevented us from continuing the computation for Ca¯ 0±7 to longer times, but the
increasing magnitude of the curvature at the tip, equal to 50}a at the end of the
computation, indicated that the interface tends to a steady shape. Antanovskii predicts
that the tip curvature of the steady shape is close to 500}a, which is beyond the
capabilities of the numerical method.

In the first three cases, for Ca¯ 0±4, 0±5 and 0±6, the values of the deformation
parameter at steady state, D¯ 0±42, 0±54 and 0±72, and the normalized tip curvature
κa¯ 3±9, 6±5 and 20, are in excellent agreement with the values read off figures 4 and
5 of Antanovskii (1996). A disagreement occurs in the absence of surface tension, for
Ca¯¢. The transient shapes shown in figure 3(b), starting from an elongated and a
circular shape, do not lead to steady shapes with cusped tips : the bubble continues to
elongate. These results are consistent with those reported in our previous study
(Pozrikidis 1997b) for c

#
¯ 0±05, and their inclusion in the present work serves only to

affirm these earlier predictions.
To illuminate the role of the structure of the incident flow in the evolution of bubbles

when the surface tension vanishes, in figure 4 we present typical stages in the evolution
of a bubble for c

"
¯ 0 and c

#
¯ 0, 0±02, 0±05 and 0±10. In all cases, as the bubble begins

deforming from the circular shape, the tip curvature increases ; but then, as the bubble
obtains an elongated shape, the curvature reaches a maximum and starts decreasing.
At long times, the bubbles develop two symmetric necks and the interfaces form
dimples. Increasing the component of the incident flow associated with the constant c

#
reduces the x-coordinate of the centres of the necks and promotes the formation of the
necks. Evidence that a steady cusped configuration arises as the result of the transient
motion could not be found.

Next, we consider an incident flow with c
"
¯ 0, c

#
¯ 0±00174. The dependence of the

deformation parameter on the capillary number for steady shapes is illustrated in figure
2(c), after Antanovskii (1996). There is a triplicity of solutions when the capillary
number is located within the window (0±585, 0±613). Antanovskii suggested that the
upper and lower solution branches are stable, and that sudden transitions occur on the
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(a)

(b)

F 3. (a) The upper part shows computed steady shapes of two-dimensional bubbles for
c
"
¯ 0, c

#
¯ 0±1, and Ca¯ 0±4, 0±5 and 0±6, and a nearly steady shape for Ca¯ 0±7; the lower part

shows the corresponding steady shapes presented by Antanovskii (1996). (b) Transient shapes for
Ca¯¢, starting from an elongated and from a circular shape.

(a)

(b)

(c)

(d)

F 4. Evolving profiles of two-dimensional bubbles for Ca¯¢, subject to the incident flow
described by equations (1) with c

"
¯ 0, and c

#
¯ 0, 0±02, 0±05 and 0±10 (a–d ).

sides of the hysteresial loop as the capillary number approaches the critical value 0±613
from lower values, and similarly for the critical value 0±585. In contrast, our
computations indicate that the lower branch on the left of the point labelled 1 is stable,
whereas the upper branch is unstable.

In figure 5(a), we present computed steady bubble shapes for Ca¯ 0±60, 0±61 and
0±61255, resulting from the transient deformation from the circular initial state. In all
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(a)

(b)

(c)

F 5. (a) Steady bubble profiles resulting from the transient deformation of the circular shape
for c

"
¯ 0, c

#
¯ 0±00174 and Ca¯ 0±60, 0±61 and 0±61255. (b, c) Evolutions that do not lead to steady

shapes, for Ca¯ 0±61255 and 0±65, respectively.

(a)

(b)

(c)

F 6. Profiles of steady axisymmetric bubbles subject to the Sherwood straining flow;
the incident velocity field is given by equations (2). (a) c

#
¯®0±2 and Ca¯ 0±03, 0±06 and 0±10;

(b) c
#
¯ 0 and Ca¯ 0±06, 0±1, 0±13636…, 0±185, 0±227; (c) c

#
¯ 0±5 and Ca¯ 0±03, 0±06 and 0±1.

three cases, the deformation parameter at state steady is in excellent agreement with
that read off the lower branch of the graph in figure 2(c). Antanovskii suggests that
a sudden transition to an elongated shape occurs at Ca¯ 0±613. In figure 5(b, c), we
present two evolutions that do not lead to steady shapes, for Ca¯ 0±61255 and 0±65,
beginning with elongated shapes. It appears that, when Ca¯ 0±61255, a steady shape
can be reached only from a limited number of initial configurations. Antanovskii’s
analysis shows the existence of a unique steady shape when Ca¯ 0±65, which, however,
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could not be reproduced in our simulations. These results indicate that the highly
elongated shapes and the cusped shapes for vanishing surface tension are unstable and
should not be expected to occur in the present family of two-dimensional extensional
flows.

Next, we consider the deformation of axisymmetric bubbles subject to the extensional
flow described by equations (2). Steady bubble shapes arising from the evolution of
spherical bubbles for c

#
¯®0±2, 0 and 0±5, and for several values of the capillary

number Ca¯µGa}γ, are shown in figure 6(a–c). For c
#
¯ 0, the results are in excellent

agreement with those presented by Youngren & Acrivos (1976), which is rather
surprising. These authors used only 14 interfacial marker points, compared to the over
80 points used in the present work. Youngren & Acrivos computed steady interfacial
shapes using an iterative method that circumvents the time-consuming time stepping.
The profiles presented in figure 6(c) for c

#
¯ 0±5 show that as c

#
is raised, the bubble

tips tend to become increasingly pointed, and cuspidial shapes emerge as predicted by
Sherwood (1984) on the basis of the slender-body theory. Increasing c

#
for axisymmetric

flow has an effect that is analogous to that of increasing c
#
for two-dimensional flow,

in the sense that cusp formation is facilitated in both cases.
In figure 7(a–c), we present stages in the evolution of a spherical bubble for

c
#
¯®0±20, 0 and 0±5; in the first case for Ca¯ 0±15, and in the second and third cases

in the absence of surface tension, for Ca¯¢. When c
#
¯®0±20, the transient profiles

transform into dumb-bells and the interface is a biconcave disk; when c
#
¯ 0, the

profiles are nearly elliptical ; and when c
#
¯ 0±5, they have spindle-like shapes ; a

column of gas is ejected from the tips of the bubble along the centreline. The profiles
shown in figure 7(c) are qualitatively similar to those photographed by Sherwood
(1984) for nearly inviscid drops whose viscosity is 0±01 times that of the ambient fluid.
Sherwood’s numerical studies of the transient deformation of axisymmetric drops,
based on slender-body theory, suggest that when the capillary number is increased
beyond a certain level, a thin column of drop fluid is ejected from the tips. The
evolving trace of the drop interface in an azimuthal plane is similar to that shown in
figure 7(c).

To put the results of the preceding two paragraphs into a unified framework, in
figure 8 we plot the deformation parameter at steady state against the capillary
number, for four values of c

#
. The high tip curvature prevented us from extending the

curves for c
#
¯ 0, 0±2 and 0±5 to larger values of the capillary numbers and higher

deformations. The curve for c
#
¯ 0 is in perfect agreement with that presented by

Youngren & Acrivos (1976). Remarkably, these authors were able to extend their
graph up to Ca¯ 0±258, even though they used a significantly lower number of marker
points. The curve for c

#
¯®0±20 terminates at a critical capillary number beyond

which steady shapes could not be obtained, even though the bubble maintained a
rounded shape throughout the evolution. This behaviour is in agreement with
Sherwood’s (1984) discovery that steady solutions, computed using the slender-body
theory, break down when the capillary number is raised beyond the value where
(a}L)#¯®c

#
, where L is the bubble half-length; at that point, the tips are located

at stagnation points (this is deduced from statement on p. 284 of Sherwood’s article that,
in his notation, solutions break down when G$

$
l #¯®1). For c

#
¯®0±20, the predicted

critical bubble length is L}a¯ 2±24 which is in fair agreement with the results of the
present numerical computations.

The general similarity between the curves displayed in figure 8 and the bottom-left
portions of the curves in figure 2(a) corresponding to values of c

#
around 0±01 makes

it tempting to suggest that a hysteresis loop joining two partially overlapping solution
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(a)

(b)

(c)

F 7. Stages in the deformation of axisymmetric bubbles subject to the Sherwood straining
flow. (a) c

#
¯®0±2 and Ca¯ 0±15; (b) c

#
¯ 0 and Ca¯¢ ; (c) c

#
¯ 0±5 and Ca¯¢.
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F 8. Deformation parameter of steady axisymmetric bubbles as a function of the capillary
number for several flows with c

#
¯®0±2, 0, 0±2 and 0±5. The curve for c

#
¯®0±2 terminates at a

critical capillary number beyond which steady shapes do not arise. The other curves terminate at
points where the numerical method was unable to produce highly curved shapes.

branches appears at a critical negative value of c
#

in the case of axisymmetric flow;
whether or not this is true must await further analysis. What is now certain is that
axisymmetric bubbles subject to the Sherwood flow behave similarly to two-
dimensional bubbles subject to the Antanovskii flow, provided that the comparison is
made at appropriate values of the parameter c

#
. In both cases, perfectly cusped shapes

do not arise.
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4. Pointed bubbles with variable surface tension

In this section, we turn to considering the effect of a surfactant on the transient
deformation of pointed bubbles. Surfactant non-uniformities cause variations in the
surface tension and produce tangential discontinuities in the interfacial stresses
identified by Marangoni. The associated fluid motion may have a profound effect on
the shape of a drop or bubble, as well as on its ability to withstand the deforming action
of an incident flow.

The physical processes by which surfactant transport affects the deformation of an
axisymmetric drop or bubble subject to a stagnation-point flow were discussed by
Stone & Leal (1990), and more recently by Milliken et al. (1993), Pawar & Stebe (1996),
and Li & Pozrikidis (1997). Under the influence of the axisymmetric flow, the
surfactant is convected from the main body of a drop or bubble towards the tips, and
this causes the surface tension to be raised at the waist and be lowered at the tips. At
the same time, the increase in the bubble surface area due to the deformation causes
a global surfactant dilution, which raises the level of the surface tension. The interplay
between surfactant accumulation and dilution determines the net deformation. Our
interest lies in investigating the effect of the surfactant on the tip curvature, rather than
in quantifying the magnitude of the deformation.

At the outset, we clarify the role of the surfactant diffusivity D
s
. At first sight, it

might appear that as D
s
tends to vanish, while all other dimensionless parameters are

held constant, the surfactant will keep being convected from the waist towards the tips,
and its accumulation will cause a continuous decrease in the tip surface tension leading
to cusp formation or disintegration. This reasoning, however, overlooks the retardation
of the interfacial velocity field due to the Marangoni stresses : when a sufficiently strong
surfactant and associated surface tension field have been established, the Marangoni
motion will oppose the outward motion due to the external flow, and the interface will
be immobilized. Thus, lowering the surfactant diffusivity while keeping all other
parameters constant does not necessarily lead to disintegration, unless the capillary
number is sufficiently high.

To clearly demonstrate this behaviour, in the inset of figure 9(a) we present steady
two-dimensional bubble shapes subject to the Antanovskii flow for c

"
¯ 0 and c

#
¯

0±05, Ca¯ 0±40, β¯ 0±50 and α¯ 0±10, 5, 50 and 500 or Pe¯ 0±40, 2, 20 and 200. In
figure 9(a–c) we display the corresponding distributions of the surfactant con-
centration, surface tension, and tangential velocity, all plotted against normalized
arclength. The differences between the flows with α¯ 50 and 500 are small ; the effect
of the surfactant diffusivity is diminished when α is on the order of 10#. Figure 9(c)
shows that, as α is raised, the magnitude of the tangential velocity tends to zero
uniformly over the interface, and becomes exceedingly small when α¯ 500. In this
limit, we encounter Stokes flow past a slender cylinder whose boundary coincides with
the bubble interface. Figure 9(b) illustrates the two salient effects of surfactant
transport : a global increase in the surface tension due to dilution, and a local decrease
at the tips due to surfactant accumulation.

Stone & Leal (1990) showed that increasing the value of the parameter β, that is,
making the surface tension a more sensitive function of the surfactant concentration,

F 9. Steady shapes of two-dimensional bubbles, shown at the inset of panel (a), and the
corresponding distributions of (a) surfactant concentration, (b) surface tension, and (c) tangential
velocity u

t
, plotted against normalized arclength l measured from the mid-plane x¯ 0, where l

Q
is the

arclength of a quarter of the interface, in a flow with c
"
¯ 0, c

#
¯ 0±05, Ca¯ 0±40, β¯ 0±50, and

α¯ 0±10, 5, 50 and 500 or Pe¯ 0±40, 2, 20 and 200.



Cusp formation at fluid interfaces in Stokes flow 43

5
50

500

α = 0.10

1.5

1.0

0.5

5

50

500

α = 0.10

0.3

0.2

0.1

0

–0.1

1.5

1.0

0.5

5
50

500

α = 0.10

0 0.2 0.4 0.6 0.8 1.0
l/lQ

ut
ab

ç
ç0

C
C0

(a)

(b)

(c)

0

0

F 9. For caption see facing page.
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(a)

(b)

(c)

(d)

(e)

F 10. Stages in the deformation of two-dimensional bubbles in the presence of surfactants for
a flow with c

"
¯ 0, c

#
¯ 0±05, at Ca¯ 0±60, and (a) β¯ 0, (b) α¯ 50, β¯ 0±2, (c) α¯ 50, β¯ 0±50,

(d ) α¯ 50, β¯ 0±8, (e) α¯ 500, β¯ 0±5.

while keeping all other parameters constant, does not necessarily lead to disintegration,
unless the capillary number is sufficiently large. More will be said about this
dependence later in this section.

Next, we consider the behaviour of the bubble when the capillary number is large
enough so that the accumulation of the surfactant at the tip has an important effect on
the stability of the interface. As a test case, we consider a flow past a two-dimensional
bubble with c

"
¯ 0, c

#
¯ 0±05, for Ca¯ 0±60. In figure 10(a–e), we show typical stages

in the deformation of bubbles, at evenly spaced time intervals, for α¯ 50 and β¯ 0,
0±20, 0±50 and 0±80, and for α¯ 500 and β¯ 0±5. In figure 11(b–d ), we show the
distributions of the surface tension for the last four cases, plotted with respect to
reduced arclength; and in figure 12(a, b) we plot the evolutions of the deformation
parameter and tip curvature.

For the bubble shown in figure 10(a) corresponding to β¯ 0, the surface tension
remains constant, equal to the initial value, at all times. Under the prescribed
conditions, the bubble tends to a steady shape, as shown in figure 10(a), which is in
excellent agreement with that predicted by Antanovskii (1994a). The curvature at the
tip also tends to a constant value that is estimated to be close to 28}a.

Consider now the evolution shown in figure 10(c), corresponding to α¯ 50 and β¯
0±50. The decreased surface tension at the tip causes the tip curvature to be raised
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F 11. Distributions of the surface tension corresponding to the shapes shown in figure
10(b–e). (a) α¯ 50, β¯ 0±2, (b) α¯ 50, β¯ 0±50, (c) α¯ 50, β¯ 0±8, (d ) α¯ 500, β¯ 0±5.

over time in a monotonic manner to notably high values. As the deformation proceeds,
the surface tension over the main body is increased to over 1±5 times the initial value
due to surfactant depletion. The motion was followed up to the point where the
computations required an exceedingly small time step to prevent numerical instabilities.
In spite of this limitation, we have obtained confirmation that the presence of the
surfactant causes the bubble tips to become considerably more pointed.

In physical terms, increasing the value of β may be regarded as increasing the total
amount of surfactant over the interface, which promotes the drop deformation by
lowering the surface tension. But since the surface tension of the clean interface γ

c
is

related to the initial surface tension γ
!

by γ
c
¯γ

!
}(1®β), if the capillary number

defined with respect to γ
!
is kept constant, increasing β also amounts to increasing the

surface tension of the clean interface, which restrains the drop deformation. Stone &
Leal (1990) showed that for drops that maintain a compact shape, the second effect
dominates the first one at any value of α and Ca.

For point bubbles, we observe a somewhat different behaviour. The curves for α¯
50 and β¯ 0±20 and 0±80 shown in figure 12(a) lie below those corresponding to β¯
0±50. In this case, the bubble responds more strongly to the external flow at a value of
β that is placed somewhere between 0±20 and 0±80, probably close to 0±50. At long
times, the deformation parameter for β¯ 0±20 increases in a monotonic manner
suggesting continuous elongation, whereas that for β¯ 0±80 tends to a limit. These
behaviours are consistent with the shapes presented in figure 10(b, d ). It is interesting
to note, in particular, that as the bubble begins deforming, the tip curvature for β¯
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F 13. The inset shows a sequence of transient profiles of an axisymmetric bubble subject to the
Sherwood flow, leading to tip streaming, for c

#
¯ 0±50, Ca¯ 0±1, α¯ 1, and β¯ 0±5. The distribution

of the surface tension at the corresponding times plotted against normalized arclength l measured
from the mid-plane x¯ 0; l

H
is the arclength of a half the trace of the interface in an azimuthal plane.

0±20 increases, reaches a maximum, and then it starts decreasing; a thin sheet of gas is
extracted from the bubble in the process of tip streaming. Figure 11(a) confirms that,
at long times, the surface tension over the main body of the drop tends to that of an
uncontaminated interface, given by γ

c
¯ 1±25γ

!
.

Figure 10(e) presents stages in the deformation of a bubble with a small surfactant
diffusivity corresponding to α¯ 500 and β¯ 0±50. Comparing these profiles with those
shown in figure 10(c) for α¯ 50 and β¯ 0±50, and inspecting the respective
distributions of the surface tension and evolution of the deformation parameter and tip
curvature, we find noticeable but small differences. For the reasons stated in a previous
paragraph, driving the diffusivity to zero does not necessarily lead to tip streaming,
unless the value of the parameter β lies within a certain range.

Similar behaviours were observed for axisymmetric bubbles subject to the Sherwood
flow, although the computations were more difficult to carry out due to the more
pronounced spindle-like shapes. For example, in the inset of figure 13(a), we present
a sequence of transient profiles leading to tip streaming for c

#
¯ 0±50, Ca¯ 0±1, α¯

1 and β¯ 0±5. The distribution of the surface tension at the corresponding times is
plotted in the main part of this figure. As the surfactant accumulates at the tips, the
surface tension decreases dramatically allowing the development of high curvature and
tip streaming. If the surface tension were constant, the bubble would deform to a
steady shape.
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5. Coalescence of five cylinders

Richardson (1997) considered the evolution of an arrangement of liquid columns
that allows the study of transient cusps in a two-dimensional flow driven solely by
surface tension. In an earlier study, Pozrikidis (1997b) was unable to observe cusp
formation in a gravity-driven flow in the presence of surface tension, though he
confirmed it in the absence of surface tension. Richardson scrutinized the motion near
the critical conditions when a bubble is about to be trapped within the liquid whose
interface unravels towards an equilibrium position. At sub-critical conditions, the
interface evolves without pinching; at super-critical conditions, two non-adjacent
sections of the interface touch, entrapping a bubble ; at the critical condition, a
transient cusp forms.

Physical intuition might suggest that, in the presence of surface tension, an interface
will remain smooth at all times. But the argument can be made that the local radius of
curvature of a pointed interface is determined by the value of a local capillary number
defined with respect to the local magnitude of the velocity of the fluid: the higher the
capillary number, the smaller the radius of curvature. Since, due to the increasing
magnitude of the velocity during the process of cusp formation the capillary number
is driven to infinity, one has to accept the possibility that the local radius of curvature
may tend to zero, and a singularity may occur in a spontaneous fashion at a finite time.

In Richardson’s model, the fluid resides in the interior of five circles : a central circle
of radius a, and four circles of radii b arranged tangentially to the central one and
positioned regularly around its perimeter, as shown in figure 14. The non-overlapping
of the circles requires that a}b"o2®1¯ 0±4142…. At the initial instant, the
interfaces are broken up at the points of contact, and the five cylinders coalesce to form
a larger descendant. This configuration serves as a local model of the flow due to the
sintering of long fibres.

In the present numerical investigation, the initial geometry is smoothed out by
replacing the cusps with circular arcs whose radii are equal to 0±10a. The small arcs are
tangential to the central cylinder and one of the outer cylinders, as shown in figure
15(a–c). The initial distribution of interfacial curvature is discontinuous at the points
where the circles touch; in Richardson’s configuration, the curvature is infinite at the
points of contact. The smoothing of the cusps is not likely to have an important effect
on the character of the motion a short time after the beginning of the flow: the
analytical solution of Hopper (1990) describing the sintering of two cylinders shows
that the cusps disappear immediately yielding infinitely differentiable smooth shapes.

Richardson’s (1997) semi-analytical solution in complex variables revealed that
when a}b¯ 0±575, a transient cusp forms as the interface is pulling out from the
enclosures, as shown in figure 14(b) ; our numerical computations confirm this
prediction, but with a different critical ratio a}b due to differences in the initial shape.
In figure 15(a–c), we present a sequence of transient profiles for a}b¯ 1, 0±675 and
0±575, which are analogous to those shown in figure 14(a–c), and observe that a nearly
cusped shape tends to form when a}b¯ 0±675. The computation was stopped when the
interfacial curvature became so large that the fine details of the motion could not be
resolved with adequate accuracy. In figure 16, we illustrate the evolution of the
curvature and radial velocity at the point where the interface meets the horizontal axis
for a}b¯ 0±675, and observe evidence that both tend to become singular at a finite
time. It would be illuminating to analyse the physics of the motion near the time of
cusp formation, and to probe the temporal dependence of the cusp curvature and
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(a)

(b)

(c)

F 14. Stages in the coalescence of five cylinders in vacuum, driven by surface tension, after
Richardson (1997) ; a is the radius of the central cylinder, and b is the radius of the peripheral
cylinders. (a) a}b¯ 1±0, (b) a}b¯ 0±575… , (c) a}b¯ 0±5. Only one quarter of the interfaces are
shown in (b, c).

velocity, but the numerical results are not sufficiently accurate for that purpose.
Richardson’s semi-analytical approach is better suited to study the local behaviour.

Two features of the motion are worth emphasizing. First, it is evident from figures
14 and 15 that as the high-curvature points move along the perimeter of the central
cylinder, the outer cylinders open up like elastic shells with little distortion. Second, in
the numerical computations, we exploited the symmetry of the flow with respect to the
horizontal and vertical axes, but not the symmetry with respect to the diagonal axes.
We found that a slight asymmetry in the marker point distribution with respect to the
diagonal axes causes the peripheral circles to tilt towards the left or right, closing one
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(a)

(b)

(c)

F 15. Coalescence of five cylinders in vacuum, computed by the boundary-integral method,
for (a) a}b¯ 1±0, (b) a}b¯ 0±675 and (c) a}b¯ 0±575.

gap and opening another. This asymmetry, however, did not prevent a cusp from
forming on one side. An experimentalist who wishes to study cusp formation in the
laboratory should be aware of this unstable behaviour.

The first of the aforementioned features motivates the investigation of the effect of
the viscosity on the ambient fluid. In vacuum, nothing prevents opposing sections of
the interfaces from deforming like elastic shells or from touching and developing cusps.
But if the ambient fluid is viscous, its drainage from the narrow gaps will delay, but not
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F 16. Evolution of the curvature κ and radial velocity u
r
at the point where the interface meets

the horizontal axis for a}b¯ 0±675. Solid line shows the curvature, circles show the velocity.

necessarily prevent, the touching of the interfaces, and is likely to suppress the
formation of cusps. To investigate this possibility, we replaced the external inviscid
medium with a viscous fluid of viscosity µ, where µ

#
¯λµ is the viscosity of the fluid

occupying the cylinders. The evolutions shown in figures 14 and 15 correspond to λ¯
¢. The value λ¯ 0 corresponds to five inviscid bubbles coalescing in an ambient liquid
under constant volume.

The coalescence of cylinders with a}b¯ 1 and λ¯ 100 is virtually indistinguishable
from that shown in figure 15(a) for λ¯¢. In figure 17(a–c), we present sequences of
evolving shapes for nearly touching initial shapes with a}b¯ 0±42, for λ¯ 0±1, 1 and
100. In the first two cases, transient bubbles of ambient fluid form within the narrow
gaps as the interfaces unfold. The necks supporting the bubbles are thicker than the
minimum interfacial separations down the crevices at the initial instant, and opposite
sections of the interfaces do not touch. As λ is raised, and the ambient fluid becomes
less viscous, the bubbles become less rounded and more elongated; for λ¯ 100, they
transform into strips. The details of the evolution for λ¯ 100 shown in figure 17(c)
differ significantly from those shown in figure 15(b, c) for λ¯¢, which is rather
surprising. In figure 15(b, c), we observe that, as the outer circular interfaces open up,
the sides of the peripheral cylinders move against each other, which is in contrast with
the motion shown in figure 17(c).

In figure 17(d ), we plot the evolution of the interfacial curvature at the points where
the interfaces cross the horizontal axis. For λ¯ 100, we note a pronounced maximum
in the magnitude of the curvature at some point during the evolution. Unfortunately,
owing to numerical difficulties associated with the numerical solution of the linear
system emerging from the boundary-integral equation, reliable results for tighter-
spaced cylinders and for values of λ higher than a few hundred could not be obtained.
It is nevertheless certain that a value of λ much higher than a few hundred is required
for a singular behaviour. Thus, a slightly viscous external fluid radically alters the
character of the motion within the gap, to the point of suppressing cusp formation.
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(a)

(b)

(c)

F 17. For caption see facing page.

The phenomenon of transient cusp formation in a surface-tension-driven flow is
intriguing both from a physical and a mathematical standpoint. A cusped interfacial
shape may certainly be prescribed in the initial condition of a problem, no matter what
the value of the surface tension. Hopper (1990) showed that the interface will evolve
at an infinitely fast rate so as to obtain a perfectly smooth shape. Now, reversibility of
surface-tension-driven Stokes requires a one-to-one correspondence between the initial



Cusp formation at fluid interfaces in Stokes flow 53

50

0

–50

–100

–150

–200
0 2 4 6 8

100

k = 0.1

ë(a+b)

1

(d)

çt
í2(a+b)

F 17. Sequences of evolving shapes for nearly touching initial shapes with a}b¯ 0±42, for (a)
λ¯ 0±1, (b) 1 and (c) 100. The frames on the right are continuations of those on the left, separated
for visual clarity. (d ) The corresponding evolution of the interfacial curvature κ at the point where
the interface crosses the horizontal axis.

cusped and the continuous family of transient evolving smooth shapes, and this can be
used to ascertain the character of the fluid motion driven by negative surface tension,
and to offer a reason for the formation of transient cusps.

Consider, as an example, the coalescence of two initially tangential viscous circular
cylinders. Asymptotically at long times, the motion will lead to a larger circular
cylinder whose area is equal to the sum of the areas of the ancestral cylinders. The
asymptotic shape of the interface at long but finite times is nearly circular, but enough
geometrical information is retained through the evolution so that when the sign of
either time or surface tension is reversed, the interface evolves back to the initial cusped
shape. That negative surface tension may lead to a cusped shape is not surprising, but
what is perhaps unexpected is that the exponentially decaying deviation of the interface
from the asymptotic circular shape carries enough information on the precise geometry
of the interface at the initial instant. Since two slightly different asymptotic shapes may
correspond to vastly different initial shapes, the problem of interfacial evolution with
negative surface tension is classified as ill-posed.

Under the influence of negative surface tension, a mass of fluid will be broken up into
smaller disjointed pieces in an effort to raise the interfacial area under the constraint
of constant volume. The breakup must necessarily occur through the formation of
transient cusps, no matter what the viscosities of the fluids. The sequences of shapes
shown in figure 14(b) suggest that, when the surface tension is negative, a properly
perturbed nearly circular interface will spontaneously form cusps in an attempt to
divide, and will then proceed to pinch itself once more thus separating into five
cylinders. The first pinching may be regarded an unsuccessful attempt to divide. The
only truly unexpected consequence of cusp formation in the presence of surface tension
is then that the velocity at a point in the fluid becomes infinite at a finite time, and
the reason for this singular behaviour is attributed solely to the flow.



54 C. Pozrikidis

The counterpart of Richardson’s arrangement in three dimensions is a composition
of spheres : a central one of radius a, and several others of radii b placed tangentially
to it. When b}a is sufficiently large, it is possible that opposing sections of the interfaces
of the satellite spheres will touch and coalesce at a point, at some time during the
sintering. When b}a is small, the interfaces will unravel towards the equilibrium
spherical shape without touching. At the threshold between these two behaviours, we
obtain an interface with a cusped three-dimensional shape. In general, the surface
integral of the mean curvature over an infinitesimal area containing the cusp will not
be finite, and the flow near this cusp will not be similar to that due to a three-
dimensional point force, although circumstances where this may occur may arise.

Dr Steve Yon contributed to the development and implementation of the finite-
volume method for the surfactant transport. Professor Stanley Richardson provided
me with a preprint of his work that motivated the numerical investigation presented in
§5. Support for this work was provided by the National Science Foundation, and the
SUN Microsystems Corporation. Acknowledgement is made to the Donors of the
Petroleum Research Fund, administered by the American Chemical Society, for partial
support of this research.

Appendix. Evolution equations for the surfactant concentration, and
finite-volume formulation

In this Appendix, we present the Cartesian form of the convection–diffusion
equation governing the change in the concentration of a surfactant at the position of
marker points distributed over an evolving three-dimensional, axisymmetric, or two-
dimensional interface. In addition, we introduce a finite-volume formulation that
serves as a point of departure for a numerical solution.

A.1. Three-dimensional interfaces

Consider a collection of marker points in a three-dimensional interface, and label them
using the two variables υ" and υ# that comprise a right-handed surface curvilinear
coordinate system, as shown in figure 18(a). It is kinematically consistent to allow the
marker points to move with the component of the velocity of the fluid normal to the
interface, and with an arbitrary tangential component. The marker-point velocity is
then

�¯ (u[n)nw, (A 1)

where w is an arbitrary vector tangential to the interface. As a preliminary, we introduce
the tangential component of the velocity of the fluid, also called the surface velocity,
defined as

u
s
¯n¬u¬n, (A 2)

where the subscript s stands for surface, and then the tangential vector field

τ¯u
s
®w. (A 3)

When τ¯0, the marker points are point particles moving with the velocity of the fluid.
The rate of change of the surfactant concentration following a marker point is given

by 0¥Γ¥t 1υ",υ#

¯®τ[¡
s
Γ®Γ¡

s
[uD

s
~#

s
Γ, (A 4)

where ¡
s

and ~#
s

are the two-dimensional surface gradient and Laplacian operators
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F 18. Curvilinear coordinates and a finite control-volume for a (a) three-dimensional,
(b) axisymmetric, and (c) two-dimensional interface.

written with reference to a local Cartesian system with its axes tangential to the surface
at the point where they are evaluated, and D

s
is the surfactant diffusivity over the

interface (e.g. Li & Pozrikidis 1997, equation (A 9)). We proceed by decomposing the
interfacial velocity u in the second term on the right-hand side of (A 4) into the normal
and tangential components, writing u¯ (u[n)nu

s
, and obtain

0¥Γ¥t 1υ",υ#

¯®τ[¡
s
Γ®Γ¡

s
[u

s
®Γ¡

s
[(n(u[n))D

s
~#

s
Γ. (A 5)

Combining the first two terms on the right-hand side with the help of (A 3),
introducing the mean curvature of the interface κ

m
and using the identity ¡

s
[n¯

2κ
m

n to restate the third term on the right-hand side, we arrive at the desired form
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When the marker points move with the velocity of the fluid normal to the interface,
w¯0, the first term on the right-hand side is absent.

To make (A 6) amenable to a finite-volume method of solution (e.g. Versteeg &
Malalasekera 1996), we take the surface integral of both sides over an interfacial
element E that is enclosed by the contour C, as shown in figure 18(a), and use the
divergence theorem to obtain
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where dS and dl are, respectively, the differential surface area of E and the differential
arclength along C. We have introduced the unit vector b¯ t¬n, where t is the unit
vector that is tangential to C and points in the counterclockwise direction when the
interface is observed from the outside, as depicted in figure 18(a). The implementation
of the finite-volume method for solving (A 7) over the triangulated interface of a
deforming drop is discussed by Yon & Pozrikidis (1998).

A.2. Axisymmetric interfaces

The surfactant concentration evolution equation for an axisymmetric interface follows
readily by considering the trace of the interface in the (x, y) azimuthal plane denoted
as C, labelling marker points distributed along C with the curvilinear coordinate υ",
and identifying υ# with the azimuthal angle } , as shown in figure 18(b).

To develop the finite-volume formulation, we introduce the unit vector t that is
tangential to C and points in the direction of increasing υ", denote the corresponding
arclength as l, and consider an interfacial element E with endpoints A and B, as shown
in figure 18(b). Performing the integration in the azimuthal direction analytically, we
find that equation (A 7) reduces to
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This equation is the starting point for the numerical procedure discussed in §2.

A.3. Two-dimensional interfaces

The differential form of the surfactant concentration evolution equation for a two-
dimensional interface in the (x, y)-plane follows readily after a straightforward change
in notation. In this case, the marker points are labelled using the single curvilinear
coordinate υ", as shown in figure 18(c).

To implement the finite-volume formulation, we introduce the tangential unit vector
along the interface t, pointing in the direction of increasing υ", denote the corresponding
arclength by l, and consider an interfacial element E with end points A and B, as shown
in figure 18(c). The counterpart of (A 7) is
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where κ is the curvature of the trace of the interface in the (x, y)-plane. This equation
is the starting point for the numerical procedure discussed in §2.
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